
CliniQG4QA: Generating Diverse Questions for
Domain Adaptation of Clinical Question Answering

Clinical Question Answering (Reading Comprehension)
• Automatically answer a user (e.g., doctor/clinician/researcher) question
for a specific patient based on the patient clinical note.

Generalization Issue
• A fully-trained QAmodel should generalize to a new environment

• However, according to (Yue et al., 2020), a base QA model trained on
the emrQA dataset struggles to answer questions on the MIMIC-III
dataset (40% drop overall compared with the original emrQA test set)

Annotations in the clinical domain
• Medical expertise
• Ethical issues
• Privacy concerns
• Time-consuming
• Costly

Introduction Method

Datasets
• Can Generated Questions Help QA on New Contexts?

References Contact & Code
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Results

• Diverse Questions Really Matter: Two Real Cases

• MIMIC-III Test set Annotation

Conclusions

• A Closer Look at Generated Question Types

• Why QG Boosts QA on New Contexts?

Machine-generated QA pairs by 9 QG
models are provided to experts as references.
Human-generated Questions: they are
highly encouraged to create new questions.
Human-verified Questions: if they do find
the machine-generated questions make sense
they can keep them.
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• CliniQG4QA leverages QG to synthesize QA 
pairs on new clinical contexts and boosts QA 
models without requiring manual annotations.

• Our question phrase prediction (QPP) module 
can be used together with most existing QG 
models to diversify their generation.

• QA corpus generated by our framework is 
helpful and that the QPP module plays a crucial 
role in achieving the gain.
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